maximal clique - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

maximal clique - traduzione in russo

SUBSET OF THE VERTICES OF A NODE-LINK GRAPH THAT ARE ALL ADJACENT TO EACH OTHER
K-clique; Maximal clique; Maximum clique; Clique number
  •  2 × 4-vertex cliques (dark blue areas).}}
The 11 light blue triangles form maximal cliques. The two dark blue 4-cliques are both maximum and maximal, and the clique number of the graph is 4.

maximal clique         

математика

максимальная клика

clique number         

математика

кликовое число (графа)

minimal element         
  • [[Hasse diagram]] of the set ''P'' of [[divisor]]s of 60, partially ordered by the relation "''x'' divides ''y''". The red subset ''S'' = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
  • fence]] consists of minimal and maximal elements only (Example 3).
ELEMENTS OF PARTIALLY ORDERED SETS SUCH THAT THERE IS NOT GREATER AND SMALLER THAN EACH OTHER ELEMENT, RESPECTIVELY (BUT THERE CAN BE INCOMPARABLE ELEMENTS)
Minimal element; Maximal elements; Maximal element

математика

минимальный элемент

Definizione

clique
n.
[Fr.] [Generally used in a bad sense.] Coterie, club, brotherhood, sodality, clan, junto, cabal, camarilla, party, gang, set, ring, private or exclusive association.

Wikipedia

Clique (graph theory)

In the mathematical area of graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G {\displaystyle G} is an induced subgraph of G {\displaystyle G} that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.

Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by Erdős & Szekeres (1935), the term clique comes from Luce & Perry (1949), who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics.

Traduzione di &#39maximal clique&#39 in Russo